Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof.

<table>
<thead>
<tr>
<th>Location in article</th>
<th>Query / Remark: Click on the Q link to find the query’s location in text Please insert your reply or correction at the corresponding line in the proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Please provide organisation details for authors, “Udatta Kher, Kostantinos Siormpas, Ziv Mazor” if any.</td>
</tr>
<tr>
<td>Q2</td>
<td>The citation “Sakka et al., 2011” has been changed to match the author name/date in the reference list. Please check.</td>
</tr>
<tr>
<td>Q3</td>
<td>Please provide the volume number or issue number or page range for the bibliography in Refs. “Hartlev et al., 2013, Jeong et al., 2014, Kotsakis et al., 2012, Nickenig et al., 2014, Sununliganon et al., 2014”.</td>
</tr>
<tr>
<td>Q4</td>
<td>Please note that as per the journal style, if there are more than 6 authors, the first 6 author names are listed followed by ‘et al.’ if the author group consists of 6 authors or fewer, all author names should be listed. Therefore, in Ref(s). “Cochran et al, 2002; Galindo Moreno et al, 2008; Hartlev et al, 2013; Kfir et al, 2009a; Kfir et al, 2009b; Vance et al, 2004”. Please list all names for up to 6 authors. For more than 6 authors, use ‘et al.’ after the first 6 authors.</td>
</tr>
<tr>
<td>Q5</td>
<td>Please confirm that given names and surnames have been identified correctly.</td>
</tr>
</tbody>
</table>

Please check this box or indicate your approval if you have no corrections to make to the PDF file

Thank you for your assistance.
A clinical and radiographic case series of implants placed with the simplified minimally invasive antral membrane elevation technique in the posterior maxilla

Udatta Kher a, Andreas L. Ioannou b,*, Tarun Kumar c, Kostantinos Siomparas d, Miltiades E. Mitsias e, Ziv Mazor f, Georgios A. Kotsakis b

ARTICLE INFO

Article history:
Paper received 2 March 2014
Accepted 15 August 2014
Available online xxx

Keywords:
Maxilla/surgery
Maxillary sinus/surgery
Sinus floor augmentation/methods
Surgical procedures
Minimally invasive
Putty bone substitute

1. Introduction

Dental implant therapy has revolutionized the rehabilitation of both the form and the function of missing teeth. In contemporary dental practice, implant dentistry is recognized as the “golden standard” for the rehabilitation of edentulous sites (Scheuber et al., 2012). Patients’ demands frequently dictate minimally invasive surgery and timely delivery of restoration (Hartlev et al., 2013; Nickenig et al., 2014). This dual goal can be readily delivered by concepts such as immediate implant placement, or non-submerged implant placement in sites with adequate bone volume post-extraction, but is unrealistic for sites where anatomic limitations require more involved procedures (Hartlev et al., 2013). One such case is the edentulous posterior maxilla.

Following extraction of teeth in the maxillary posterior region, pneumatization of the maxillary sinus frequently occurs (Mazor et al., 1999; Rothamel et al., 2007). Depending on the degree of pneumatization in conjunction with the amount of coexisting ridge resorption in an apical-coronal direction, different surgical approaches are utilized for sinus lift surgery (Summers, 1994; Mazor et al., 1999; Nkenke et al., 2002; Kfir et al. 2006). Traditionally, indirect, or transalveolar sinus floor elevation techniques are utilized when less than 5 mm of gain in bone height are sought, while more aggressive direct, or lateral-window approaches are utilized in more advanced cases (Engelke and Deckwer, 1997).

Direct sinus augmentation techniques have been shown to yield very favorable outcomes in regards to bone regeneration in the

* Corresponding author. Advanced Education Program in Periodontology, University of Minnesota, 515 Delaware Street SE, Minneapolis, MN 55455, United States. Tel.: +1 651 395 9200.
E-mail address: ioann005@umn.edu (A.L. Ioannou).

http://dx.doi.org/10.1016/j.jcms.2014.08.005
1010-5182/© 2014 Published by Elsevier Ltd on behalf of European Association for Cranio-Maxillo-Facial Surgery.

Please cite this article as: Kher U, et al., A clinical and radiographic case series of implants placed with the simplified minimally invasive antral membrane elevation technique in the posterior maxilla, Journal of Cranio-Maxillo-Facial Surgery (2014), http://dx.doi.org/10.1016/j.jcme.2014.08.005
sinus as well as very good success rates for implants placed in grafted bone (Mazor et al., 1999; Galindo-Moreno et al., 2008). One of the major drawbacks associated with this type of technique is patient satisfaction. Not only do patients undergo a more involved procedure that has greater morbidity than conventional implant placement, but they usually have to wait for several months prior to having their chief concern addressed, restoration of their functional ability. In a hypothetical case of ridge atrophy with coexisting pneumatization of the sinus it is not infrequent for less than 5 mm of residual bone height to remain in the posterior maxilla. In such a case a patient would routinely undergo direct sinus augmentation followed by implant placement approximately 6–9 months later, they would finally have the implant restored after 3–4 months of healing, giving a total treatment time of approximately 1 year. It is only reasonable that this estimated waiting time would seem protracted to the majority of patients. In order to address this concern there are recent reports in the literature showing that the controlled elevation of the sinus floor using hydraulic pressure may extend the indications for transalveolar sinus augmentation techniques and reduce treatment time for patients (Kfir et al., 2007, 2009a, 2011). Utilizing the minimally invasive antral membrane elevation technique Kfir et al. (2006) were successful in achieving up to, or even beyond, 10 mm of gain in vertical bone height in a series of published reports (Kfir et al., 2007, 2009b; 2011, 2012). The rationale behind the use of a balloon is the even distribution of hydraulic pressure at the membrane–bone interface that results in atrophic and safe elevation of the Schneiderian membrane. Although efficacious, this technique has not become the standard method for sinus elevation surgical procedures, possibly because of the need to purchase specialized equipment and for specific training.

The number of different surgical techniques for sinus augmentation is only surpassed by the number of biomaterials that have been used to overcome the challenge of insufficient vertical bone height in the posterior maxilla (Galindo-Moreno et al., 2008; Dahlin and Johansson, 2011). Various bone-grafting materials are frequently used in sinus lift procedures, including autogenous bone, allografts, xenogeneic bone, and alloplastic bone substitutes (Del Fabbro et al., 2004; Galindo-Moreno et al., 2008; Sununilaganon et al., 2014; Xuan et al., 2014). Recent data have shown that bone substitutes displaying a putty-like consistency can present a valuable alternative in bone-grafting procedures (Vance et al., 2004; Mahesh et al., 2012; Kotsakis et al., 2012, 2014a). The handling characteristics of putty bone substitutes have expanded the available array of treatment options for bone grafting in narrow spaces, and their viscoelastic properties may be exploited to increase the safety and predictability of sinus lift procedures.

The aim of the present case series was to evaluate a minimally invasive transalveolar sinus elevation technique utilizing calcium phosphosilicate (CPS) putty for hydraulic sinus membrane elevation.

2. Materials and methods

2.1. Patient selection

In this retrospective study, 21 patients consecutively treated in a dental clinic with a simplified, minimally invasive technique for transalveolar sinus elevation were evaluated. Data related to age, sex, implant location, intra-operative or post-operative complications, implant stability, implant success and radiographic bone changes were recorded for all patients. Patients with treatment plans for sinus elevation surgery with simultaneous implant placement were included in this study. A minimum of 2 mm of bone height from the crest of the ridge to the floor of the sinus, and 5 mm of minimum bone width were set as inclusion criteria. In addition, patients had to be healthy, non-smokers, with no history of acute sinusitis or sinus pathology. Patients with asymptomatic mild thickening of the sinus mucosa were included. Exclusion criteria included history of previous maxillary sinus surgery, chronic intake of any medication that affects bone healing (chronic steroid regimen, oral or IV bisphosphonates, etc.), active periodontal disease, or periapical pathology of the adjacent teeth. All patients were evaluated preoperatively for the need for sinus augmentation via cone beam tomography scans (CBCTs). The indications for the procedure and possible complications were reviewed with the patients and all patients agreed to proceed and signed a consent form.

2.2. Surgical technique and follow-up

Patients were treated under local anesthesia and were premedicated with a loading dose of amoxicillin/clavulanate potassium administered 1 h prior to the surgical appointment (875 mg/125 mg). Transcrestal sinus floor elevations were performed using a modification of the Summer’s technique (Summers, 1994). The pre-operative height of the residual ridge was assessed radiographically by an experienced implant surgeon (Fig. 1). Local anesthesia was administered using 2% lidocaine with 1:100,000 epinephrine to aid hemostasis of the area. Full thickness mucoperiosteal flaps were elevated in the posterior maxilla in order to gain access to the alveolar crest (Fig. 2A). An ostectomy was initiated at the ridge crest using a 2.0 mm pilot drill. The drill was stopped 1 mm short of the estimated height of the sinus floor. A periapical X-ray was obtained to verify the exact position of the drill in proximity to the sinus floor. The ostectomy was further widened using the drilling sequence recommended by the implant manufacturer (Tapered Internal, BioHorizons, Birmingham, AL, USA). A small quantity of approximately 0.2 cm³ of CPS putty (NovaBone Dental Putty, NovaBone Products, Alachua, FL, USA) was delivered in the ostectomy via a narrow-tipped cartridge delivery system to act as a cushion prior to tapping the sinus floor, and a 3 mm cone concave ostectomy with depth markings and a mallet were used to carefully fracture the floor of the sinus (Fig. 2B,C). Care was taken not to push the ostectomy into the sinus cavity to avoid inadvertent perforation of the sinus lining. Following the green-stick fracture of the floor of the sinus, the bone substitute was directly injected into the prepared sinus cavity via the cartridge delivery system. The cartridge tip fitted tightly in the ostectomy and allowed the insertion pressure due to injection of the graft to be delivered directly to the fractured inferior border of the sinus floor. 0.5 cm³ of CPS putty was carefully injected into the ostectomy (Fig. 3). The hydrostatic pressure exerted by the putty resulted in an atrumatic elevation of the sinus floor. CPS putty was added in increments until adequate elevation of the Schneiderian membrane was seen on intra-operative radiographs. An appropriately sized implant was placed at the level of the osseous crest using a manual torque wrench for enhanced tactile sensation (Fig. 2D,E). The implants were initially engaged into the remaining native bone at the crest of the ridge and then slowly twisted in to engage in the viscous CPS putty at the apical aspect of the ostectomy. Cover screws were placed and primary flap closure was achieved utilizing a single interrupted suturing technique.

Postoperative instructions included oral administration of amoxicillin/clavulanate potassium (500 mg/125 mg three times a day) and ibuprofen (400 mg four times a day) for the first week.
post-operatively. Chlorhexidine rinses were prescribed twice daily for 2 weeks. The patients were instructed to limit themselves to a soft diet for the first 2 weeks after surgery.

Patients were followed-up at 24 h, 10 days and 3 months after the surgery for post-surgical evaluation. Second stage surgery was scheduled at 3–5 months post-sinus lift. During the implant uncoverage appointment a periapical radiograph was taken to evaluate the amount of vertical bone height gain and assess radiographic signs of implant integration (Figs. 2F, 4, 5). Radiographic measurements of bone height from the crest to the floor of the sinus where calculated twice by the same examiner at two different time intervals and the means of both measurements were reported. The measurements included the scaling of the measured gain in vertical bone height based on the radiographic magnification of the implant to reduce any bias associated with possible elongation of the periapical radiographs. Specialized imaging software was used for the above measurements (Image J, National Institutes of Health, Bethesda, Maryland, USA).

All patients were followed-up and assessed for implant survival and sinus complications on an individualized recall basis. Patients were urged to contact the implant surgeon if any complication arose between the recall appointments. Implant success was evaluated clinically according to the criteria of Cochran et al., 2002. Briefly, the examination consisted of clinical detection of implant mobility with the application of horizontal jiggling forces with the rear end of two periodontal probes. Assessment of the peri-implant tissues was performed visually for signs of erythema and/or edema and by palpation of the tissues surrounding the implant area. Additionally, periapical radiographs were obtained to ascertain the absence of a continuous radiolucency around the implant. Patients were also interviewed for subjective symptoms and evaluation of pain (Cochran et al., 2002).

Fig. 1. Pre-operative assessment of the cross-sectional radiographic image revealed less than 6 mm of preoperative height on the edentulous site.

Fig. 2. (A) Intraoperative view of the residual ridge prior to initiation of the osteotomy; (B) the tip of the cartridge inserted into the osteotomy site; (C) application of the osteotome to produce the required elevation of the sinus floor; (D) implant placement; (E) implants placed at the level of the osseous crest; (F) postoperative radiograph showing significant elevation of the sinus floor. Note the even fill of the sinus antrum by the flow of the viscous putty.
3. Results

A total of 29 implants (Tapered Internal, BioHorizons, Birmingham, AL, USA) were placed in 21 consecutively treated patients with the simplified minimally invasive transalveolar sinus elevation technique. The average patient age was 48.5 ± 12 years, and 9 patients were female. None of the patients were smokers. The record of adverse events included mild to moderate postoperative edema for the first two or three postoperative days in most patients, and flap dehiscence in one patient that was caused by trauma during mastication. No reports of hematoma, severe pain, or paroxysmal vertigo were noted and none of the patients complained of symptoms of sinusitis post-operatively (0%). The mean preoperative bone height was 4.34 ± 1.16 mm, while a significant gain of 10.31 ± 2.46 mm was noted post-operatively (p < 0.001) (Table 1).

Of the 29 implants placed, five were placed in 2nd premolar sites, 19 in 1st molar sites and five in 2nd molar sites. 28 of the 29 implants were placed simultaneously with the transalveolar sinus elevation with good to optimal primary implant stability in sites with residual bone height ranging from 2.8 mm to 6.5 mm. The remaining implant was placed after 6 months of healing due to the poor bone quality at the site. The residual bone height during the sinus augmentation surgery was 2.5 mm and the bone quality was deemed as poor (class IV) during implant site preparation, thus implant placement was aborted and the osteotomy was filled with CPS putty after elevation of the sinus to 13.5 mm. After 6 months of healing the site was re-entered and the implant was successfully placed with adequate primary stability. The implant was functionally loaded after 4 months of healing and remained successful throughout the follow-up period. Due to delayed implant placement this fixture was excluded from the analysis. All implants placed in this case series were left to heal for 4–5 months after implant placement and were then loaded with cement-retained prostheses. All of the simultaneously placed implants (28/28) were clinically stable and had no signs of peri-implant disease during a follow-up period of at least 1 year post-placement (minimum of 9 months post-loading) (100% success rate).

Patient characteristics and implant success were presented descriptively. The gain in bone height post-sinus surgery was assessed with a Wilcoxon signed-rank test. The alpha level was set at α = 0.05. Calculations were performed with statistical software, R.
membrane or a platelet-rich-fibrin membrane (Ding et al., 2013; Gassling et al., 2013).

The consistency of the putty helps minimize membrane perforations and associated adverse events during percussion with osteotomes. The technique also attempts to overcome the need to purchase the specialized equipment required to apply hydraulic pressure for the elevation of the Schneiderian membrane, while simultaneously placing an adequate volume of the graft material in the site to allow for placement of the implants. Additional advantages of this technique are itsatraumatic nature, reduced chair-side times, reduced overall treatment duration, improved patient comfort and minimal graft wastage. The alloplastic biomaterial utilized has been shown to exhibit timely resorption and subsequent replacement with new vital bone in histological studies with residual graft fractions ranging from 4.3% to 11.5%, after 6 months of healing (Mahesh et al., 2012; Kotsakis et al., 2014b). The prompt bone turnover rate observed with CPS putty may provide a clinical benefit in terms of primary and secondary implant stability that increases its suitability in implant surgery (Kotsakis et al., 2014a).

Limitations of the technique proposed, are the necessary operator skill and experience needed for success, and the minimum 3 mm of available bone height needed (Ferrigno et al., 2006), avoiding potential failure for the implant. In one case where treatment was planned with the recommended technique and a baseline bone height of 2.5 mm, adequate primary stability was not attainable due to the poor bone quality of the site and thus treatment was performed in a staged manner. Therefore, when considering the loosely packed medullary bone frequently encountered in the posterior maxilla, the simplified minimally invasive antral membrane elevation technique should be recommended for sites with at least 3 mm of residual bone height. The application of this technique should always be performed simultaneously with the placement of the appropriate biomaterials in the osteotomy, as the use of a blood clot or platelet concentrates alone may lead to unpredictable results (Jeong et al., 2014). On the other hand, bone substitutes such as freeze-dried allografts, xenografts and mineralized alloplastic substitutes have all shown to be efficacious in sinus augmentation procedures with results comparable to those observed with particulated or block grafts of autogenous bone (Accocella et al., 2011; Chaves et al., 2012; Kher et al., 2014; Sakka and Krenkel, 2011; Sbordone et al., 2014). The use of bone morphogenetic protein 2 has also shown very promising results in sinus augmentation surgery and if the currently available information is supported by longitudinal studies, their clinical use may surpass that of bone substitutes (Gutwald et al., 2010, Triplett et al., 2009).

The presented technique may offer a more conservative procedure with less postoperative morbidity, than the direct sinus augmentation approach. This technique can be successfully used for sinus augmentation with simultaneous implant placement, as it may offer increased primary stability to the implant due to the viscous nature of the utilized bone graft. These advantages make this simplified approach a viable option for transalveolar sinus augmentation. A possible limitation of the present study is the relatively short-term follow-up observed, with a minimum observation time of 9 months when loading was considered the baseline and 12 months when placement was set as the baseline. Nonetheless, it is well established that the vast majority of early and medium-term implant failures occur at the time of second stage surgery rather than manifesting as failure to maintain osseointegration post-loading (Wagener and Froum, 2006). Yet, controlled clinical studies are required to longitudinally assess the efficacy of this surgical improvisation in comparison to direct sinus augmentation approaches and to unequivocally prove the proposed superiority of the presented technique on patient-related outcomes.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Pre-operative bone height</th>
<th>Post-operative bone height</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.34 ± 1.16</td>
<td>14.65 ± 2.17</td>
<td>10.31 ± 2.46*</td>
</tr>
</tbody>
</table>

*Highly statistically significant (p < 0.001).
5. Conclusions
The simplified minimally invasive antral membrane elevation technique is based on the application of hydraulic pressure by a viscous bone graft that acts as an incompressible fluid. Therefore, simultaneously with the atramumatic elevation of the Schneiderian membrane, grafting of the maxillary sinus is achieved resulting in promotion of intrasinus bone formation, increased implant stability due to the viscoelastic nature of CPS putty, and a shorter operative time owing to the simultaneous elevation and grafting approach.

The proposed technique is a simple, efficacious, minimally invasive approach for sinus elevation that can be recommended for sites with at least 3 mm of residual height.

Conflict of interest
None of the authors has any conflicts of interest to this study.

References